Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo.

نویسندگان

  • D E Kruse
  • M A Mackanos
  • C E O'Connell-Rodwell
  • C H Contag
  • K W Ferrara
چکیده

The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm(-2) up to 352 W cm(-2). The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image-guided, noninvasive, spatiotemporal control of gene expression.

Spatiotemporal control of transgene expression is of paramount importance in gene therapy. Here, we demonstrate the use of magnetic resonance temperature imaging (MRI)-guided, high-intensity focused ultrasound (HIFU) in combination with a heat-inducible promoter [heat shock protein 70 (HSP70)] for the in vivo spatiotemporal control of transgene activation. Local gene activation induced by moder...

متن کامل

Review Paper: A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU) seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain str...

متن کامل

Spatial and temporal control of transgene expression with a heat-sensitive promoter and MRI guided focused ultrasound

Introduction: Local production of therapeutic proteins, via gene therapy approaches, holds great promise for cancer treatments. Control of transgene expression, however, remains one of the fundamental problems of gene therapy. Ideally, the level of expression should be controlled both in time and in space. Here, we present such a a control system that is based on the use of a well-known heat-se...

متن کامل

Alterations of the expression of RGS4 and RGS10 proteins in the anticonvulsant effects of low frequency stimulation on perforant path kindling in adult male rats

Introduction: Application of low-frequency stimulation (LFS) is a new method for treatment of drug resistant epileptic patients. Previous studies demonstrated that activation of receptors coupled to Gi proteins is one of the mechanisms of the anticonvulsant effect of LFS. Thus, in this study, alterations in the expression of RGS4 and RGS10 proteins, as negative regulators of Gi proteins, wer...

متن کامل

PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors

Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 53 13  شماره 

صفحات  -

تاریخ انتشار 2008